Abstak
ABSTRAK
Sejarah nuklir komersial terdahulu ada dua kecelakaan besar yang
menyebabkan kerusakan inti reaktor yang telah terjadi di Three Mile Island
(1979) serta terbaru yakni kecelakaan reaktor nuklir di Fukushima Dhai-Ichi
(2011) Jepang yang diakibatkan gempa bumi dibarengi dengan tsunami sehingga
menyebabkan kerusakan pada 3-unit PLTN dan berdampak negative terhadap
kesensitifan penduduk mayoritas tentang anggapan risiko tenaga nuklir. Dalam
perkembangannya, teknologi nuklir melahirkan karakteristik dasar hokum nuklir
yaitu fokusnya yang rangkap pada risiko dan manfaat dan juga berbagai prinsip
diantaranya prinsip pertanggung jawaban dan prinsip kompensasi penjamin
keselamatan. Sebelum membangun reaktor secara fisik, terlebih dahulu dibuat
perencanaan perhitungan yang matang dengan simulasi kinerja keselamatannya
untuk menghadapi kemungkinan kecelakaan. Hal tersebut berguna untuk
mengembangkan model simulasi kecelakaan PLTN yang disebabkan gagalnya
sistem pembuang panas. Dengan diperolehnya hasil evaluasi desain suatu PLTN
yang valid, menunjukan tingkat kualitas sumber daya manusia berkualitas. Badan
Tenaga Nuklir Nasional (BATAN) selaku lembaga litbang telah melakukan
penelitian terkait sistem pending pasif dengan dibangunnya fasilitas eksperimen
yang dinamakan Untai FASSIP-01 Mod.1. Untai FASSIP-01 Mod.1 memiliki
salah satu komponen bagian cooler yang terdiri dari RCS dan evaporator.
Pemahaman tentang perpindahan kalor dan laju aliran di daerah cooler perlu
dilakukan. Sehingga, penelitian ini bertujuan untuk menentukan perpindahan
kalor dari permukaan pipa kedalam air bagian cooler. Metode penelitian
dilakukan secara eksperimen dengan mevariasikan tekanan di RCS untuk
mengatur pendinginan dengan memvariasikan tekanan 1,5 bar, 1,8 bar, 2,1 bar,
2,4 bar, 2,7 bar dan 3,0 bar pada daya heater di BCH-02 ditetapkan pada 1190
watt (tegangan 100 volt). Analisis dilakukan dengan menggunakan data
katakteristik perubahan temperatur TC-01, TC-02, TC-03 dan TCSF-01, TCSF
02, TCSF-03 berdasarkan mevariasikan tekanan. Hasil penelitian menunjukan
bahwa perpidahan kalor pada permukaan pipa pada tekanan 1,5 bar q = 2,813
watt, pada tekanan 1,8 bar q = 2,693 watt, pada tekanan 2,1 bar q = 2,652 watt,
pada tekanan 2,4 bar q = 2,714 watt, pada tekanan 2,7 bar q = 2,900 watt, dan
pada tekanan 3,0 bar q = 2,939 watt.
kata Kunci: RCS, cooler, perpindahan kalor, pendingin, FASSIP-01 Mod.1.
viii
ABSTRACT
In the previous commercial nuclear operation history, there were two
major accidents that caused reactor core damage that had occurred on Three
Mile Island (1979) and most recently the nuclear reactor accident at Fukushima
Dhai-Ichi (2011) Japan caused by an earthquake coupled with a tsunami causing
damage to 3 the nuclear power plant and negatively impact the sensitivity of the
majority of the population regarding the perceived risk of nuclear power. In its
development, nuclear technology gave birth to the basic characteristics of nuclear
law, namely its dual focus on risks and benefits and also various principles
including the principle of accountability and the guarantor's principle of
compensation for safety. Before building the reactor physically, a careful
calculation plan is first made by simulating its safety performance to deal with the
possibility of an accident. This is useful to develop a nuclear power plant accident
simulation model due to the failure of the heat dissipation system. By obtaining
the results of a design evaluation of a valid nuclear power plant, showing the
level of quality human resources quality. The National Nuclear Energy Agency
(BATAN) as a research and development agency has conducted research related
to the passive pending system with the construction of an experimental facility
called the Strand FASSIP-01 Mod.1. The FASSIP-01 Mod.1 strand has one
component cooler part consisting of an RCS and an evaporator. An understanding
of heat transfer and flow rate in the cooler area needs to be done. Thus, this study
aims to determine the heat transfer from the surface of the pipe into the water
cooler section. The research method was carried out experimentally by varying
the pressure at RCS to regulate cooling by varying the pressure of 1.5 bar, 1.8
bar, 2.1 bar, 2.4 bar, 2.7 bar and 3.0 bar on the heater power at BCH -02 is set at
1190 watts (100 volt voltage). Analyzes were performed using temperature
change characteristics of TC-01, TC-02, TC-03 and TCSF-01, TCSF-02, TCSF-03
based on varying pressures. The results showed that heat transfer at the pipe
surface at a pressure of 1.5 bar q = 2,813 watts, at a pressure of 1.8 bar q =
2,693 watts, at a pressure of 2.1 bar q = 2,652 watts, at a pressure of 2.4 bar q =
2.714 watts, at a pressure of 2.7 bar q = 2,900 watts, and at a pressure of 3.0 bar
q = 2,939 watts.
Keywords: RCS, cooler, heat transfer, cooler, FASSIP-01 Mod.1.